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Magnetism and superconductivity in heavy-fermion 
superconductors with a partially gapped Fermi surface 
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Ioffe Physico-Technical Institute, Politechnichakaya 26. St Petemburg 194021, Russia 

Received 21 December 1992 

Abstrad A large-degemy model is applied to study antifemagretic order and 
superconductivity in heavy-fermion superconductors with 8 p d y  gapped Femi surface. An 
antifemmagnetic order opens a gap on those pans of the h i  surface where wsting takes 
plxe. Below the N M  tmPeraME, antifermmagnelic moments of f atoms are anomalously 
small (- IO-' we). T k  rest of the Fermi surface becomes gapped due 10 superc.mductirity 
stimulated by the long-range antifermmagnetic order. The superconducting gap is anisobopic 
and vanishes on lines. A satisfactory agreement with experimental data for URuzSiz is obtained. 

1. Introduction 

At present there are a lot of experimental data on a profound relation between magnetism 
and superconductivity in heavy-fermion compounds such as URuzSiz, Wt3, CeCuZSiz and 
me13 (see reviews [ 1-51 and references thezein). In these compounds the Superconductivity 
follows an antiferromagnetic transition. Direct evidence for an antiferromagnetic order 
has been given by neutronmattering measurements in URuzSiz [6,7] and Vpt, (see the 
review paper of Aeppli et d [SI and references therein), x-ray magnetic scattering in 
URuzSiz [9], muon-spin-relaxation measurements [IO] and nuclear quadrupole resonance 
[I11 in CeCuzSiz. While in URu& the antiferromagnetic msition is accompanied 
by an anomaly in specific heat [12], no anomaly in specific heat at T = TN has been 
observed in UF't3, CeCu2Siz and UBel3. Another puzzle of these compounds is in their 

~ very small antiferromagnetic moments (- pg). Moreover, in the superconducting 
phase, the specific heat demonstrates a power-law temperature dependence contrary to the 
conventional Bardeen-Cooper-Schrieffer (Bcs) theory that predicts a simple exponential 
law. This fact means that the superconducting gap is anisotropic and vanishes on lies 

has led to the conclusion that a superconducting coupling arises between electrons with 
enhanced mass. The mass enhancement is a result of the KO& effect, which at t e m p "  
below the Kondo temperam TK renormalizes the Fermi surface. Unusual properties of the 
superconducting phase in these compounds have stimulated the search for a non-phonon 
mechanism of superconductivity (a detailed list of references on the problem may be found 
in [5] for example). 

In previous papers [13-15] I have proposed a microscopic model that may he applied 
to study magnetism and superconductivity of heavy-fermion compounds. Using the 
model treated by the mean-field approach, I have found that an antiferromagnetic order 
arising in the heavy-fermion state at the N6el temperature TN is characterized by small 
antiferromagnetic moments even at zero temperature. The magnitude of these moments is 

~ or points on the Fermi surface. A wide experimental study of the superconducting state 
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5942 A V Golrsev 

proportional to the ratio TN/To where TO is the low-temperature Kondo scale. In the case 
TN - 0.1T0 the moments are of order 10-2p~. in agreement with experimental data In 
[ 14,151 I have assumed that nesting takes place on the whole Fermi surface. This assumption 
results in a non-zero spindensity-wave (SDW) gap on the whole Fermi surface for the half- 
filled band. However the heavy-fermion compound URu2Si2 clearly demonstrates that an 
SDW transition opens a gap over a portion of the Fermi surface [12]. In the present paper 
I take this fact into account and consider a model with a partially gapped Fermi surface. 
It enables us to make a more accurate estimation of the antiferromagnetic moments. For 
URuzSi2 my theoretical result 0.035 p~g is in good agreement with experimental data 0.04 p~ 
[6,7]. Moreover, I calculate the jump in the electronic specific heat at the N&l temperature 
TN and find that the jump is proportional to the portion of the gapped p m  of the Fermi 
surface. If the portion is small, then the jump is also small. This result gives a qualitative 
explanation of the absence of an anomaly at TN in the specific heat of some heavy-fermion 
superconductors. 

The next problem that I shall be concerned with is a study of the superconducting state 
arising in the antiferromagnetic heavy-fermion state (Tc e TN -z TK). In my previous9 
paper [14] I have shown that a long-range antiferromagnetic order formed in the heavy- 
fermion state can change an exchange interaction between conduction electrons and localized 
f electrons in such a way that this exchange interaction becomes attractive for heavy 
quasiparticles in lower antiferromagnetic bands. In the present paper I shall show that 
this mechanism of superconductivity leads to a superconducting state with an anisompic 
gap. This gap is equal to zero along lines on the Fermi surface. 

2. Mean-field approach 

I shall study magnetic and superconducting properties of heavy-fermion compounds by 
using the following Hamiltonian [13-151: 

(2.1) H = H o f  Hm+ Hd 

where HO is either the CoqblinSchrieffer Hamiltonian 1161 

J 
HO = C c k C T k C n k  - - f A C n i C $ f q i  (2.2) 

ak N nqi 

or the slave-boson Hamiltonian [ 17-19] 

HO = ckC:kCnk + €ffA fni - N-II2 V ( 6 i  f 2 c n i  + HC). (2.3) 

Here the pseudospin quantum numbers U and q run from - j  to j ,  and N = Z j  + 1 is the 
spin degeneracy. Operators c&, Cnk and fz, fni are related to conduction elect" with 
wavevector k and f electrons localized at sites e,. In terms of the slave-boson method the 
constraints 

nk oi ni 

are imposed on each site R i .  The interaction between c and f electrons described by 
Hamiltonian (2.2) or (2.3) results in the formation of the heavy-fermion state at temperatures 
T lower than the Kondo temperature TK 117-191. 
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The Hamiltonian 

h 
Hm = - N3 

describes an anisotropic local exchange interaction.where the spin operators S' are 

(2.5) 

Below, this interaction is supposed to be antiferromagnetic (51 z 0). Because in the. limit 
N >> 1 the numbers of c and f electrons per orbital (n, and nf correspondingly) are of 
order O( I), the local moments (S;) and (S i i )  are of order O(N*). Owing to the factor N-3,  
the energy of magnetic interaction (2.5) is of order O ( N ) ,  while the Hamiltonian (2.2) (or 
(2.3)) gives a contribution of order O( 1) to the energy of Ruderman-Kittel-Kasuya-Yoshida 
(RKKY) interactions. Therefore, in the framework of the model (2.1) at N > 1, it is the 
interaction (2.5) that is responsible for a magnetic phase transition. 

The Hamiltonian 

describes an additional local exchange interaction between c and f electrons. It has been 
shown that, at positive 52 and temperatures T lower than the N&l temperature TN (TN < TK), 
interaction (2.7) generates an attraction between heavy quasiparticles [14]. It fs this attraction 
that brings about the superconducting transition (Tc < TN). 

Temperature properties of the system described by Hamiltonian (2.1) are determined by 
the ratio of the parameters J ,  J I  and J2 to each other, the topology of the Fermi surface 
and the total number of electrons n, = n,  + nf. Phase diagrams of the model (2.1) have 
been presented in [ 151 for some cases. Below, I shall only consider the case TK z TN > TE, 
which is typical for heavy-fermion superconductors. 

In the mean-field approach the Hamiltonian (2.1) may be written in the form [14,15] 

I 
equation 

E; - q; E; is the renormalized energy of the f level and may be determined from the 

c ( f 2 f " i ) M F  = N(%- rii)  E N n f  (2.10) 

where Nf = N n r  is the occupancy of the f level. In equations (2.9) and (2.10) the designation 

n 

WMF means 

(A)MF Z-'Spexp(-pHm)A. (2.11) 
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The free energy of the model under consideration is 

F ~ ~ = - N z t J i M t i M r i -  JzAfA,+(qo-r~)A]+Q, (2.12) 
i 

where 

The chemical potential p depends Jn the total number of c and f electrons. A minimization 
of free energy (2.12) relative to Mci, Mfi, roi, E; and the complex order parameter Ai gives 
equations (2.9) and (2.10). 

3. Antiferromagnetic phase transition 

In this section I shall study the propelties of an antiferromagnetic state in the case when the 
N&l temperature is lower than the Kondo temperature. For simpliciry I consider a simple 
cubic lattice with f atoms at lattice sites. At temperatures T -= TK the coherent Kondo state 
is formed. In this state the energy spectrum consists of two hybridized bands [I91 

Annihilation operators bunk for quasiparticles in these bands are related to the operators 
c,k and fnk by the Bogliubov transformation 

At low temperatures quasiparticles with wavevector k near the Fermi surface have the 
enhanced mass 

m'lmo = p'/po = COS-~CYF = I + n f / p o q  >> 1 

TO = E: - & = n,p;' exp(- 1lpOJ) 

(3.3) 

(3.4) 

where po and mo are the density of states and electron mass on the Fermi surface in the 
conduction band Ek, and TO = E; - p is the low-temperature scale. In the case nt c 112 
the lower band Elk is partially full. The Fermi surface is determined by the equation 

Elk = f i ,  (3.5) 

Let us suppose that a portion (U) of the Fermi surface satisfies the nesting condition 

Elk - CL = CL- E1k-q (3.6) 
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for wavevectors Q = (bc, fn, hn). If U = 1, then nesting takes place on the whole 
Fermi surface. If U is not too small, then the system under consideration is unstable against 
antiferromagnetic ordering with the wavevector Q. At T below the N&l tempemture TN 
an SDW arises: 

Mfwi = Mfca cos(&&). (3.7) 

According to (3.7) the local magnetic moment Mn changes its sign from site to site. The 
N&l temperature TN is determined by the equation [I41 

[ I  + JiN-'F(Q)I' = J:N-6xf(Q)xdQ) (3.8) 

(3.9) 

In the case TN << TO the correlation functions (3.9) may be found by assuming that the main 
contribution is given by those parts of the Fermi surface where nesting (3.6) takes place. 
Thus one obtains 

(3.10) 

The parameter A is related to the susceptibility of non-interacting electrons in the band E&: 

xk % N'cY~oA. The number parameter a is 

(I = N-' En' = j ( j  + 1)/3N2. (3.11) 
(I 

If the parameter U is not too small and U In(To/TN) >> 1, then the Nkel temperature TN 
determined from (3.8) is equal to 

TN = Toexp[-To/(Acu*nrpoJ:v)]. (3.12) 

Denoting TNO = TN(U = I), equation (3.12) may be written in the form 

TNO = TNyTd-". (3.13) 

Now I shall calculate the jump of the specific heat at TN and the temperature dependence 
of the antiferromagnetic moment (Mf) o f f  atoms at T near TN. With that end in view, I 
expand the free energy (2.12) in Mf and Mc and keep terms up to order O w 4 )  inclusive. 
The free energy (2.12) per f atom is given by 

f = fo - NJIM,Mf- $N-zJ~xf(Q)M~ - fN-'J:xc(Q)M: - N-'J:F($)MCMf 

+ (vB~4pom*J,4N/32T2m,)[IW, + (mo/ma)MfI4 (3.14) 
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where 

CO sinh x dr 
0 x cosh3 x 

a4 N-5 c m 4  B 1 = 0.85. (3.15) 

When calculating the term of order O(M4) I have neglected the contribution of those parts 
of the Fermi surface where nesting (3.6) does not take place. For the w e  TN << TO the 
effect of antiferromagnetic order on the parameters ro and c; may be neglected. Then the 
moments Mf and Mc may be,found by minimizing the free energy (3.14) relative to these 
moments. Assuming 

N-3JiF(Q) i.(YUpoJiln(To/T~) << 1 (3.16) 

(3.17) 

where T 1 - T/TN. It should be noted that at 51 >> f i  the antiferromagnetic moment 
Mf of an f ion is much larger than the amplitude (Mc) of the SDW formed by c electrons. 
At zero temperature one obtains Mf(T = 0) = Mf(0) and M.(T = 0) = -TN/JI L14.151. 
According to (2.9) at T = 0 the total antiferromagnetic moment o f f  ions is equal to 

Ma = gjL(BI(S;)I = RjL(BNZMdO) = [ j ( j  f 1)/3~lgj~~Nf~(T~/To)ln(To/T~) (3.18) 

where gj is the gyromagnetic factor, and p ~ ,  is the Bohr magneton. Substituting (3.17) into 
(3.14) one obtains the free energy per f ion 

f = fo - 2aZNfvT~rz/Bn4To. (3.19) 

This equation enables us to calculate the jump of the specific heat per f atom at the N&l 
temperature: 

(3.20) 

where y = nZNfk~/3To is the Sommerfeld coefficient of the electronic specific heat, and 
kB is the Boltzmann constant. Using (3.1 1) and (3.15) at j = 112 one obtains 

SC/YTN = 1.43~.  (3.21) 

It is interesting to note that the ratio SC/Ma does not depend on the f occupancy Nf and 
parameter w. At j = 112 one finds 

p = ps8c/kBMa = lg/In(To/TN). (3.22) 

This equation shows that the quantity p depends weakly on the ratio To/TN. 

doubling of the unit cell. 
The antiferromagnetic order with the wavevector Q = ( f n , i x , f n )  leads to a 

The first Brillouin mne is reduced by a factor of two 
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correspondingly. In the antiferromagnetic state, T e TN. the mean-field Hamiltonian (2.8) 
may be written as 

with 

where k runs over the reduced Brillouin zone, p = k - Q. This Hamiltonian may be 
diagonalized by using the perturbation theory with respect to the parameter A:%/(&-&). 
I find that the energy spectrum consists of four families of twofold degenerate bands 
114, IS]: 

I I  z 112 Elks = f ( E l p  -k Elk - [ (Elp  - E 1 k ) ~ ' r 4 ( A , k )  1 1 
E- f ( E i p  + Elk + [ (Elp  - E d Z  +4(A:\)z1"2t 

&n = i ( E z p  + Ezk - [(Ezp - E d  + 4 ( A ~ ~ ) 2 1 1 / 2 1  

E4kn = $(Ezp  f Ezk + [ (&p - E d 2  4- 4(Aak) 1 1. n z 112 

(3.25) 

If the total number (nJ of c and f electrons is smaller than 0.5, then the lower band &I& 
is partially full. An SDW gap is open due to the long-range antiferromagnetic order on 
those parts of the Fermi surface (Ell, = p) where the nesting (3.6) takes place. This 
gap is equal to 21AALl = 21uJ1(MC - moMf/m')/NI. The portion of the gapped Fermi 
surface is approximately equal to v .  The rest of the Fermi surface remains ungapped. In 
the antiferromagnetic state the renormalized Fermi surface is determined by the equation 

&Ink P .  (3.26) 

According to (3.20) the jump SC at TN is propoltional to the portion (U) of the gapped 
Fermi surface. The lower U, the lower is SC. This fact may be the -on for the lack of an 
anomaly in the specific heat at TN in such heavy-fermion compounds as UPt3, UBel3 and 
CeCuZSiz. 

4. Antiferromagnetic state of URuzSiz 

In this section I shall analyse in the framework of the theory an antiferromagnetic state 
of the heavy-fermion compound URuZSiz. This compound has the body-centred tetragonal 
ThCrzSh-type crystal structure. An antiferromagnetic order arises at TN = 17.5 [12]. 
Figure 1 shows the antiferromagnetic structure of URuZSi2 obtained by using neutmn- 
scattering measurements [6 ] .  The magnetic moments of the U atom are directed along the 
tetragonal c axis. The lattice translational vecton of the crystal structure considered are 

(4.1) I a3 = ?(a, -a, c). I 1 U I  = I (a ,a ,  -c) a2 = -(-a, Z a, c) 
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A primitive unit cell based on these vectors contain one U atom. The corresponding 
reciprocal vectors are 

g1 = 2n(u-' ,  U - ' ,  0) g2 = 2n(0, U-1, c-1) g3 = 2 n ( d ,  0, c-1). (4.2) 

Introducing eight equivalent vectors 

(4.3) I Q = fig, f igz f yg3 

it is easy to show that an SDW 

Mi = M COS(QR+) (4.4) 

has the antiferromagnetic stmcture represented in figure 1. The antiferromagnetic order with 
the wavevector Q leads to a doubling of the unit cell. At T c TN the unit cell is shown 
in figure I. The first Brillouin zone is reduced by a factor of two correspondingly. The 
initial first Brillouin zone looks like a truncated octahedron. The reduced Brillouin zone is a 
rectangular prism with sides %/a, 2 n / a  and 2n/c inscribed into the truncated octahedron. 
The reciprocal vectors of the antiferromagnetic structllre are 

1 

Figure 1. Antiferramagnetic sIn~cnUe of lJRuzSi2 (f" 161). 

In order to apply the results obtained above, it is necessary to assume that a part of the 
Fermi surface of URuzSiz has nesting property (3.6) with respect to the wavevectors (4.3). 
In other words, I assume that the Fermi surface contains flat parts that are placed near the 
surface of the reduced Brillouin zone. 

Let us compare the theoretical results obtained in section 3 with experimental data for 
URuzSiz. 

Maple et 01 [ 121 have found that the jump of the specific heat in URuzSiz at TN = 17.5 K 
is SC = 5.82 J K-' mol-', y = 113 mJ K-' mol-' and, consequently, S C / ~ T N  = 2.9. 
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Moreover, they have estimated the portion of the gapped Fermi surface: U = 0.4. 
For j = 1/2 and U = 0.4, equation (3.21) gives the following theoretical estimation: 
8Cth/yTN % 0.6. However, data obtained in [20,21] (y = 180 r d  K-' mol-', U = 2/3) 
correspond to S C / ~ T N  sx 1.8, while equation (3.21) for U = 2/3 gives SC&TN 

The magnitude of the antiferromagnetic moment of U atoms in URuzSi2 may be found 
from equation (3.18). For j = 1/2, TO = 70 K [51, Nr = 1 and U = 0.4 [12], one obtains 
Ma = 0,035 /LB. For U = 2/3 [21] we have Ma = 0.058~~. These theoretical estimations 
are in satisfactory agreement with neutron-scattering measurements: Ma = (0.03izO.Ol)p~ 
[6], Ma = (0.037 f 0.005)p~ [7]. The x-ray magnetic scattering data Ma = 0.02~~ [9] 
are in slightly worse agreement with the theoretical estimations. 

Taking TN = 17.5 K and TO = 70 K, from equation (3.22) one obtains ph = 14. For 
SC = 9.67 x J K-' per U atom [12] and Ma = 0 . 0 3 7 ~ ~  [7], the experimental value 
of the quantity (3.22) is p zv 19. Therefore., the theory is also in satisfactory agreement 
with experiment relative to the quantity p .  

0.95. 

5. Superconducting state 

Now I consider peculiarities of a superconducting state arising in the framework of 
Hamiltonian (2.1). In my previous papers [14,15] it has been shown that a long-range 
antiferromagnetic order changes the exchange interaction (2.7) in such a way that this 
interaction becomes attractive for heavy quasiparticles in the antiferromagnetic bands &k. 
This attraction stimulates a superconducting coupling and brings about the superconducting 
transition at a critical temperature Tc. At T c Tc the superconducting order parameter Ai 
(2.9) depends on radius vector R, in the following way [14]: 

Ai = Acos(QR,.) (5.1) 

where Q is the wavevector of the antiferromagnetic order studied in section 3. In 
the superconducting state the system under consideration is described by the mean- 
field Hamiltonian (2.8). In order to diagonalize this Hamiltonian, it is necessary first 
to diagonalize Hamiltonian (3.23) and find a transformation of the operata bwk to 
annihilation operators a?,& for quasiparticle states in the antiferromagnetic bands Eoak. 
Using the perturbation theory with respect to the offdiagonal elements A'' and A'' and 
taking into account terms of order O(ALi.(E3,k - &k)) I find 

hlok = rlnkalrrk +. . . 
b%k = rZokag,k 4-. . . 

blup = tlupalok + . . . 
b2ok = TZapaiok 4- . . . (5.2) 

where 

q o k  = cosj3 slop = sin6 
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Here 

The following important properties may be obtained from equations (5.3) and (5.4): 

TI.-n.k = rink rI.-n.p = -51op 

52.-0.k = rZnk Q , - ~ . ~  = -r%p. 
(5.5) 

Substituting the Bogoliubov transformations (3.2) and (5.2) into (2.8). one obtains that in 
the superconducting state the system under consideration is described by the Hamiltonian 

(5.6) HSC = ~ [ & k a ~ k a l o k  - ~(Auka: ,kat - , -k  I + HC)l 
o k  

where Auk is an anisotropic superconducting order parameter: 

(5.9) P" - @kP - upkuup - uvpugk. 

In Hamiltonian (5.6) I omit terms corresponding to the upper antiferromagnetic bands, since 
at T < T << T, these bands are empty and do not participate in superconducting coupling. 
If wavevectors IC and p = IC - Q are near the Fermi surface, then the function rP,k takes a 
simpler form [14,151 

(5.10) 

At T -= Tc the superconducting gap lAnkl is open over the remaining part of the Fermi 
surface. The superconducting order parameter A is determined by the following equation: 

According to equation (5.7). the b dependence of the superconducting order parameter 
A n k  is determined by the function q,,b (5.8). Now I show that (oak is equal to zero along 
some lines on the Fermi surface. Let us consider an intersection between the renormalized 
Fermi surface (3.26) and the surface of the reduced Brillouin zone (it is a surface E l k  = Elp). 
Fork  lying on lines of the intersection we have 

&k = E v p  Elok = (5.12) 
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One can prove that for k lying on these lines cos(2p) = 0 and, consequently, quo,* = 0. It 
means in accordance with (5.7) that the superconducting gap IAuo,*l vanishes on the lines. 
It is well known that the existence of lines with zero superconducting gap leads to a T 2  
dependence of specific heat at temperatures T lower than T, [22,23] while the BCS theory 
predicts a simple exponential law. 

Though the existence of lines of zero gap has been established above for the simple 
cubic and tetragonal lattices, this result is also valid for lattices with other symmetries (for 
example, a hexagonal lattice). 

If the mechanism of superconductivity considered in the present paper is realized in 
heavy-fermion superconductors, then it can explain the simple power law observed in the 
specific heat of these compounds. A good TZ dependence of the specific heat in the 
superconducting state has been observed for Upt, [24-261 and for URu& 1271. Additional 
evidence for zeros of the superconducting gap along lines on the Fermi surface has been 
given by spin-lattice relaxation measurements for UBel3 [ZS], CeCqSiZ and W t 3  /291. 
The ultrasonic attenuation measurements in v p t 3  are also consistent with the existence of 
lines of the zero gap [301. 

6. Discussion and conclusion 

In the present paper I have discussed the magnetic and superconducting properties of 
heavy-fermion compounds with the simple cubic and bady-centred tetragonal structures. 
It has been shown that the model (2.1) can explain the anomalously small antiferromagnetic 
moments (- IO-’ pe) observed in heavy-fermion superconductors. For URuzSi2 the model 
gives 0.035 ps. in good agreement with experimental data 0.04 p g  16.71. I have also 
calculated the jump of the specific heat at the Nee1 temperature and found satisfactory 
agreement with experimental data for URuzSi2. This is additional evidence in favour of 
the model proposed. The main assumption used in my calculations is in the hypothesis 
about the Fermi surface topology. I have assumed that at least a part 3f the Fermi surface 
obeys nesting properties. In other words, I have assumed that there are. flat parts of the 
Fermi surface placed near the surface of the reduced Brillouin zone. The commensurate 
antifemmagnetic transition opens a gap on these parts of the Fermi surface. The rest of 
the surface remains ungapped in the temperature range Tc < T < TN. Below TN the 
long-range antiferromagnetic order changes the character of the exchange interaction (2.7) 
between conduction electrons and localized f electrons. I have shown that this interaction 
becomes attractive and generates the superconducting coupling between heavy electrons. 
The superconducting state formed due to this mechanism is characterized by an anisotropic 
order parameter. The superconducting gap vanishes along lines on the Fermi surface. Such a 
character of the gap is also in agreement with experimental data obtained for heavy-fermion 
superconductors by use of specific heat, spin-lattice relaxation and ultrasonic attenuation 
measurements [24-301. Unfortunately, so far the problem of the critical temperature in 
the framework of the model under consideration remains unsolved. For the purpose of 
calculating T, it is necessary to know the k dependence of the energy bands formed in the 
antiferromagnetic state. This problem demands special consideration. 

~ 
~ 
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